
Compilation of Functional
Programming Languages

Wolfgang Thaller
presented for CAS 706, Winter 2005

Challenges

• Typechecking

• Memory Management
(we need Garbage Collection)

• Polymorphism

• Higher Order Functions

• Lazy Evaluation

Phases

Source

Lexing & Parsing

Typed Source

Desugaring

λ-Calculus

Parsed Source

Typechecking

Phases (contd.)

λ-Calculus
Optimisations

λ-Calculus

Intermediate Code

“Imperative” Code

C
ode G

eneration

Enriched λ-Calculus

• Just the basics of functional programming

• Everything else is just syntactic sugar*.

• Let’s “desugar” to a simpler language.

* Syntactic sugar causes cancer of the semicolon.
-- Alan Perlis

λ-Calculus (contd.)
• Lambda Calculus

• variables, constants

• λ-abstraction, application

• Extended by:

• let, letrec

• algebraic datatypes, case

• lots of built-in functions

Desugaring (1)
map f [] = []
map f (x:xs) = f x : map f xs

map = λ f . λ ys .
 case ys of
 Nil -> Nil
 Cons x xs ->
 Cons (f x) (map f xs)

class Show a where
 show :: a -> String

print :: Show a => a -> IO ()
print x = putStrLn (show x)

print :: (a -> String)
 -> a -> IO ()
print = λs. λx. putStrLn (s x)

Desugaring (2)

Abstract Machines

• λ-calculus ≠ “real” computers
• define an “abstract machine”

that matches FP more closely
• ... but still has “useful” operational

semantics

Abstract Machines

• The G Machine
(Augustson, Johnson, 1984)

• The Spineless Tagless G (STG) Machine
(Peyton Jones, 1992)

• Eval/Apply STG (GHC ≥ 6.0)
(Marlow, Peyton Jones, 2004)

• KAM (MLKit)
(Elsman, Hallenberg 2002)

• And many more...

Garbage Collection

• No, we don’t want to call free().

• Heap allocation is cheap
(with a copying collector).

• The Garbage Collector needs to

• know all pointers

• distinguish pointers from non-pointers

Polymorphism

• Monomorphisation
(e.g. C++ templates, MLton)

• Pass extra information
(e.g. qsort in C needs size of element)

• Uniform Representation
(everything is a pointer; “boxed objects”)

Values in the Heap

• Heap object needs to contain information
for the garbage collector

• Lazy evaluation: could be an unevaluated
expression (a “thunk”)

• Maybe use a tag bit to distinguish values
from thunks?

• Always need to check whether an object is
evaluated

Functions

• In λ-calc, a function takes exactly one
argument:
add = λx. λy. x + y

• Handle multiple (curried) arguments at once
for efficiency
add = λx y. x + y

• ... or just prefer to use tuples as parameters:
add = λ(x,y). x + y

Functions as Values

• Functions are first-class values

• A function is not just statically compiled
code, it also “contains” some data

• represented by pointer to a “closure”
(data structure with code pointer + data)

• calling a function directly remains simple

Free Variables

• A pointer to a piece of code (like a C
function pointer) is not enough

• We need to include the values for the free
variables

λy. x + y

add = λx. λy. x + y
Free Variable

add 42 = λy. 42 + y

Partial Application

• This function has “arity” 2

• The code expects two arguments

• If we call it with just one argument,
we construct a “partial application node” on
the heap:

• A partial application node is itself a function
closure.

add = λx y. x + y

add 42 = λy. add 42 y

Push/Enter vs. Eval/Apply

• Who decides whether we passed enough
arguments?

• The called function (push/enter)

• The caller (eval/apply)

Push/Enter

• Use a second, separate stack for argument
passing

• At the beginning of a function, check
whether there are enough arguments
available

• If yes, take them from the stack, if no,
construct a partial application node

• This method is traditionally used for lazy
functional programming languages.

Push/Enter

is

dead

Eval/Apply

• The caller is responsible for:

• making sure the function itself is evaluated
(not a thunk)

• checking how many arguments the function
wants

• ... and proceeding accordingly

• This can be handled by code in the run-time
system

Thunks

• a thunk represents an unevaluated
expression in a lazy language

• ≈ a function without arguments:
code pointer + free variables

• after evaluation is done, “update” the thunk
(who is responsible for updating?)

Indirections

• If the result is no larger than the thunk was,
just overwrite the thunk

• If the result is larger than the thunk was,
allocate the result elsewhere and overwrite
the thunk with an “indirection” that points
to the value

• Indirections can be removed by the GC

The STG Machine

• “Spineless Tagless G Machine”

• Simon Peyton Jones, 1992

• intended for lazy languages

• used in the Glasgow Haskell Compiler

STG: Closures

• Uniform representation:
a heap object always consists of...

• A pointer to the “entry code”

• Values for the free variables of that code

• If the object is already evaluated, the code
will just “return” the value

• Indirections are trivial to implement

• No Tags necessary: Tagless

STG: The Stack

• The stack contains “activation records”

• An activation record is a return address plus
values for free variables used by that code

• When eval/apply is used, this is almost like in
C.

The STG Language

• Functional Intermediate code

• other abstract machines use instruction lists

• operational semantics:

• let means allocate memory

• case means evaluate something

The STG Language

map =
 \r [f ds]

 case ds of wild {

 Nil -> Nil [];

 Cons x xs ->

 let { foo = \u [] map f xs; } in

 let { bar = \u [] f x; } in

 Cons [bar foo];

 };

map = λ f . λ ys .
 case ys of
 Nil -> Nil
 Cons x xs ->
 Cons (f x) (map f xs)

The STG Language

map =
 \r [f ds]

 case ds of wild {

 Nil -> Nil [];

 Cons x xs ->

 let { foo = \u [] map f xs; } in

 let { bar = \u [] f x; } in

 Cons [bar foo];

 };

Parameters

Allocate
two thunks

u = requires update

r = can be reentered
(no update)

Evaluate the first
cell of the list

Return a value

STG: Updates

• At the beginning of the code that evaluates a
thunk, push an “update frame”

• The update frame’s entry code is in the run-
time system

• It performs the update (using an
indirection), then returns to the next
activation record on the stack.

STG: Vectored Returns

• When you call a function whose return type
is an ADT

• Instead of one return address, push one
return address for each constructor

